Estimasi Penjualan Oli Gardan dengan Perbandingan Berbagai Metode Deret Waktu untuk Mengatasi Permintaan Fluktuatif

Authors

  • Kun Harjiyanto Universitas Global Jakarta
  • Ayu Nurul Haryudiniarti Universitas Global Jakarta
  • Akhiruddin Akhiruddin Universitas Global Jakarta

DOI:

https://doi.org/10.55606/isaintek.v6i02.138

Keywords:

Estimating, Forecastin, Prediction, Time Series Method Analysis

Abstract

Sales of scooter gear oil-syn120mlrep spare parts with part serial number 08234M99K8LZ0 at PT. ADM experienced problems with the number of orders needed to suppliers. One of the reasons is because of uncertain sales. The author offers a solution to overcome the problems faced by the inventory section by estimating sales using forecasting methods based on past data. The purpose of estimating sales is so that the company can anticipate surges in demand for spare parts from customers. The method used is Time Series Analysis assisted by POM QM software for windows. This forecasting method consists of Moving Average, Weighted Moving Average, Exponential Smoothing and Exponential Smoothing with Trend. In addition to calculating forecasting, forecasting tests were also carried out by calculating (Mean Absolute Deviation-MAD) of 30.175, mean squared error (Mean Square Error-MSE) of 1434.542, and average absolute percent error (Mean Absolute Present Error-MAPE). 49.443%,. The results of forecasting test calculations are obtained for forecasting recommended to companies using Exponential Smoothing with Trend with a total demand for the next period of 85 units. The company can make decisions for the next month's orders to suppliers based on estimated sales using the forecasting method that has been chosen earlier, so that fluctuations in demand from customers can be overcome.

References

Al Zukri, P., Widyaningrum, S. N., & Aini, Q. (2020). FORECASTING PERMINTAAN POMPA AIR DANGKAL SHIMIZU MENGGUNAKAN METODE TIME SERIES. Sistemasi: Jurnal Sistem Informasi, 9(2), 226–234. https://doi.org/10.32520/STMSI.V9I2.694

Ardirakhmanto, M. A., Rahayuningsih, S., & Komari, A. (2020). Pengendalian Persediaan Bahan Baku Pada Industri Tenun Ikat “Medali Mas” Kediri. JURMATIS (Jurnal Manajemen Teknologi Dan Teknik Industri), 2(2), 75–83. https://doi.org/10.30737/JURMATIS.V2I2.949

Ariyadi, P., Effendi, M. M., & Raharjo, S. B. (2022). Analisa Prediksi Harga Saham Blue Chip Lq45 Dengan Metode Data Mining Backpropagation Neural Network (Studi Kasus Di Bursa Efek Indonesia). Prosiding Sains Dan Teknologi, 1(1), 68–76.

Aziza, J. N. A. (2022). Perbandingan Metode Moving Average, Single Exponential Smoothing, dan Double Exponential Smoothing Pada Peramalan Permintaan Tabung Gas LPG PT Petrogas Prima Services. Jurnal Teknologi Dan Manajemen Industri Terapan, 1(I), 35–41. https://doi.org/10.55826/TMIT.V1II.8

Chimmula, V. K. R., & Zhang, L. (2020). Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos, Solitons & Fractals, 135, 109864. https://doi.org/10.1016/J.CHAOS.2020.109864

Fitriyani, A., Usman, M., Sofrizal, M. T., & Kurniasari, D. (2022). Peramalan Jumlah Klaim di BPJS Kesehatan Cabang Metro Menggunakan Metode Double Exponential Smoothing. Jurnal Siger Matematika, 3(1), 17–22. https://doi.org/10.23960/JSM.V3I1.2969

Maanijou, R., & Mirroshandel, S. A. (2019). Introducing an expert system for prediction of soccer player ranking using ensemble learning. Neural Computing and Applications, 31, 9157–9174. https://doi.org/10.1007/S00521-019-04036-9/METRICS

Rendon-Sanchez, J. F., & de Menezes, L. M. (2019). Structural combination of seasonal exponential smoothing forecasts applied to load forecasting. European Journal of Operational Research, 275(3), 916–924. https://doi.org/10.1016/J.EJOR.2018.12.013

Rindiani, S., & Satyawisudarini, I. (2019). Analisis Peramalan dan Pengendalian Persediaan Bahan Baku dalam Keputusan Jumlah Pembelian Bahan Baku di TB Adimekar 8. Almana : Jurnal Manajemen Dan Bisnis, 3(3), 453–468. https://doi.org/10.36555/ALMANA.V3I3.1254

Shrestha, M. B., & Bhatta, G. R. (2018). Selecting appropriate methodological framework for time series data analysis. The Journal of Finance and Data Science, 4(2), 71–89. https://doi.org/10.1016/J.JFDS.2017.11.001

Soelaiman, N. F., & Al-Hakim, R. R. (2022). Pelanggaran Kedisiplinan yang Kerap Dilakukan Pegawai Negeri Sipil di Lingkungan Politeknik Negeri: Analisis Regresi Linear Terhadap Faktor-faktornya. Prosiding Seminar Nasional Humaniora, 2, 20–24. https://www.conference.unja.ac.id/SNH/article/view/192

Susanti, E. (2019). Pendugaan Peramalan Earning Per Share Saham LQ45. Jurnal Rekayasa Sistem Industri, 4(2), 71–79. https://doi.org/10.33884/JRSI.V4I2.1215

Taylor III, B. W. (2019). Introduction to Management Science (11th ed.). Salemba Empat.

Yan, J., Möhrlen, C., Göçmen, T., Kelly, M., Wessel, A., & Giebel, G. (2022). Uncovering wind power forecasting uncertainty sources and their propagation through the whole modelling chain. Renewable and Sustainable Energy Reviews, 165, 112519. https://doi.org/10.1016/J.RSER.2022.112519

Zhou, Q., Zhu, Z., Xian, G., & Li, C. (2022). A novel regression method for harmonic analysis of time series. ISPRS Journal of Photogrammetry and Remote Sensing, 185, 48–61. https://doi.org/10.1016/J.ISPRSJPRS.2022.01.006

Zhuang, X., Yu, Y., & Chen, A. (2022). A combined forecasting method for intermittent demand using the automotive aftermarket data. Data Science and Management, 5(2), 43–56. https://doi.org/10.1016/J.DSM.2022.04.001

Downloads

Published

2021-12-26

How to Cite

Kun Harjiyanto, Ayu Nurul Haryudiniarti, & Akhiruddin Akhiruddin. (2021). Estimasi Penjualan Oli Gardan dengan Perbandingan Berbagai Metode Deret Waktu untuk Mengatasi Permintaan Fluktuatif. Jurnal Informasi, Sains Dan Teknologi, 4(2), 86–92. https://doi.org/10.55606/isaintek.v6i02.138