Potensi Polisakarida (Selulosa, Lignin, Pektin) Sebagai Bahan Baku Alternatif Bio-Based Surfaktan Polimerik

Authors

  • Margaretha Hanna Tiffany Universitas Sulawesi Barat
  • Andi Marlisa Bossa Samang Universitas Sulawesi Barat
  • Syahmidarni Al Islamiyah Universitas Sulawesi Barat

DOI:

https://doi.org/10.55606/isaintek.v6i1.62

Keywords:

Modifikasi hidrofobik, hidrofilik polisakarida, selulosa, lignin, pektin

Abstract

Penggunaan surfaktan polimerik berbasis polisakarida memberikan solusi dalam memanfaatkan sumber daya alam terbarukan dan berkelanjutan sebagai penyusun bagian hidrofilik maupun hidrofobik pada molekul surfaktan. Ulasan ini bertujuan untuk membahas mengenai potensi polisakarida (selulosa, lignin, dan pektin) sebagai bahan baku dalam sintesis surfaktan polimerik untuk aplikasinya di berbagai sistem emulsi dan dispersi pada produk pangan, agrokimia, tekstil, farmasi, perawatan diri dan rumah tangga (personal care and household), serta pertambangan minyak bumi. Pembahasan mencakup mengenai metode kimiawi dan fisik yang dapat digunakan dalam memodifikasi polisakarida secara hidrofobik dan hidrofilik untuk mengubah karakteristiknya menjadi agen aktif permukaan (surfaktan). Hal ini dapat dicapai dengan memperkenalkan substituen yang hidrofobik (senyawa non-polar) maupun hidrofilik (senyawa polar) ke dalam gugus fungsional  dari polisakarida (gugus hidroksil alifatik dan gugus fenolik). Surfaktan merupakan molekul yang mempunyai gugus polar dan non-polar. Surfaktan dapat terakumulasi pada permukaan cairan atau antarmuka di antara dua fase yang berbeda (polar dan non-polar) dengan peran dalam menurunkan tegangan permukaan dan antarmuka. Modifikasi hidrofobik pada selulosa dan pektin secara kimiawi dilakukan menggunakan metode esterifikasi, transesterifikasi dan amidasi. Modifikasi hidrofilik lignin secara kimiawi menggunakan metode alkilasi, sulfonasi, oksidasi, fenolasi, serta aminasi. Sedangkan modifikasi hidrofilik lignin dan modifikasi hidrofobik pektin secara fisik dilakukan menggunakan metode iradiasi sinar UV. Adapun modifikasi hidrofobik selulosa secara fisik menggunakan metode iradiasi plasma dingin.  

References

Acharya, S., S. Liyanage., P. Parajuli, S.S. Rumi, J.L. Shamshina, N. Abidi. (2021). Utilization of Cellulose to Its Full Potential : A Review on Cellulose Dissolution, Regeneration, and Applications. Polymers. 13 (24) : 4344

Alwadani N, Fatehi P. (2018). Synthetic and lignin-based surfactants: Challenges and opportunities. Carbon Resources Conversion. 1 (2): 126-138.

Christiaens S, Sandy Van Buggenhouta, K Houbena, ZJ Kermania, Katlijn RN Moelantsa, Eugénie D Ngouémazonga, Ann Van Loeya, Marc E.G. Hendrickx, KU Leuven. (2016). Process–Structure–Function Relations of Pectin in Food. Critical Reviews in Food Science and Nutrition. 56 (6): 1021-1042.

Colodel C, RM das Gracas Bagatin, TM Tavares, CL de Oliveira Petkowicz. (2017). Cell wall polysaccharides from pulp and peel of cubiu : a pectin-rich fruit. Carbohydrate Polymers. 174 : 226-234.

Denney, A. S., & Tewksbury, R. (2013). How to Write a Literature Review. Journal of Criminal Justice Education. 24 (2): 218–234.

Deodhar S, P. Rohilla, M. Mannivannan, Sumesh PT, Madivala GB. (2020). Robust method to determine critical micelle concentration via spreading oil drops on surfactant solutions. Langmuir. 36 (28): 8100-8110.

Dong, X., Dong Y., Jiang M., Wang L., Tong J., & Zhou J. (2013). Modification of microcrystalline cellulose by using soybean oil for surface hydrophobization. Industrial Crops and Products. 46: 301–303.

Elena Avrămescu, R., Ghica M.V., Dinu- Pîrvu C., Prisada R., Popa L. (2018). Superhydrophobic natural and artificial surfaces - A structural approach. Materials. 11(5): 866.

Ganewatta, M. S., Lokupitiya, H. N., Tang, C. (2019). Lignin biopolymers in the age of controlled polymerization. Polymers. 11(7), 1176.

Hubbe M, O Rojas, L. Lucia. (2015). Green modification of surface characteristics of cellulosic materials at the molecular or nano scale: a review. Bioresources. 10 (3): 6095-6206.

Kar, M., Chourasiya, Y., Maheshwari, R., & Tekade, R. K. (2019). Current Developments in Excipient Science. Basic Fundamentals of Drug Delivery, 29–83.

Kurečič, Manja Smole, Majda Sfiligoj, K Stana-Kleinschek. (2013). Use of polysaccharide based surfactants to stabilize organically modified clay particles aqueous dispersion. Carbohydrate Polymers. 94 (1): 687-694.

Kute AB, D Mohapatra, N Kotwaliwale, SK Giri, BP Sawant. (2020). Characterization of pectin extracted from orange peel powder using microwave-assisted and acid extraction methods. Agricultural Research. 9 (2): 241-248.

Hessel, V., Tran Nam, Asrami M.R., Tran D.Q. (2021). Sustainability of green solvents- Review and perspective. Green Chemistry. 24(2): 410-437.

Laurichesse S, L Avérous. (2014). Chemical modification of lignins: towards biobased polymers. Progress in Polymer Science. 39 (7): 1266-1290.

Li Z, Y Ge, L Wan. (2015). Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media. Journal of Hazardous Materials. 285 : 77-83.

Li, Q., Wang S., Jin X., Huang C., Xiang Z. (2020). The Application of Polysaccharides and Their Derivatives in Pigment, Barrier, and Functional Paper Coatings. Polymers. 12 (8):18-37.

Lim, ZQ., NAA Aziz, AK Idris, NA Md Akhir. (2020). Green lignosulphonate as co-surfactant for wettability alteration. Petroleum Research. 5 (2): 154-163.

Liu Z, X Lu, L An, C Zu. (2016). A novel cationic lignin-amine emulsifier with high performance reinforced via phenolation and mannich reactions. Bioresources. 11 (3): 6438-6451.

Luo J, Y Xu, Y Fan. (2019). Upgrading pectin production from apple pomace by acetic acid extraction. Applied Biochemistry and Biotechnology. 187 (4): 1300-1311.

Morrow RL. (1990). Enhanced oil recovery using alkylated, sulfonated, oxidized lignin surfactants. US Patent. 19 : 1-7.

Nae DG, Centha A Davis. (1992). Enhanced oil recovery using oil soluble sulfonates from lignin and benzyl alcohol. US Patent. 19 : 1-8.

Polanco-Lugo E, JI Martínez-Castillo, JC Cuevas-Bernardino, T González-Flores, R Valdez-Ojeda, N Pacheco, T Ayora-Talavera. (2019). Citrus pectin obtained by ultrasound-assisted extraction: physicochemical, structural, rheological and functional properties. CYTA-Journal of Food. 17 (1): 463-471.

Raffa, P., DAZ Wever, F Picchioni, AB Broekhuis. (2015). Polymeric surfactants: Synthesis, properties, and links to applications. Chemical Reviews. 115 (16): 8504-8563.

Rodríguez Fabià, S., Torstensen J., Johansson L., Syverud K. (2022). Hydrophobization of Lignocellulosic materials part II: chemical modification. Cellulose. 29: 8957-8995.

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research. 104: 333–339.

Souza, J. R., Araujo, J. R., Archanjo, B. S., Simão, R. A. (2019). Cross-linked lignin coatings produced by UV light and SF6 plasma treatments. Progress in Organic Coatings. 128, 82–89.

Szlek, D.B., Reynolds A., Hubbe M.A. (2022). Hydrophobic molecular treatments of cellulose based or other polysaccharide barrier layers for sustainable food packaging : A review. Bioresources. 17(2): 3551-3673.

Usman, M., Zhang C., Patil P. J., Mehmood A., Li X., Bilal M., Haidar J., Ahmad S. (2020). Potential applications of hydrophobically modified inulin as an active ingredient in functional foods and drugs - A review. Carbohydrate Polymers. 252: 117-176.

Wang, X., Chen, Q., Lü, X. (2014). Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocolloids. 38, 129–137.

Wu, X., Sun H., Qin Z., Che P., Yi X., Yu Q., Zhang H., Sun X., Yao F., Li J. (2020). Fully physically crosslinked pectin-based hydrogel with high stretchability and toughness for biomedical application. International Journal of Biological Macromolecules.149 (2020) : 707-716.

Xiang W, Blaise Tardy, Long Bai, Cosima Stubenrauch, Orlando JR. (2019). Measuring the interfacial behavior of sugar-based surfactants to link molecular structure and uses. Biobased surfactants. 387-412.

Yapo, B. M., & Gnakri, D. (2014). Pectic pectins polysaccharides and their functional properties. Polysaccharides. 1–18.

Yue X, F Chen, X Zhou. (2011). Improved interfacial bonding of PVC/wood-flour composites by lignin amine modification. Bioresources. 6 (2): 2022-2034.

Zhang J, Y Ge, L Qin, W Huang, Z Li. (2018). Synthesis of a lignin-based surfactant through amination, sulfonation, and acylation. Journal of Dispersion Science and Technology. 39 (8): 1140-1143.

Zouambia Y, N Moulai-Mostefa, M Krea. (2009). Structural characterization and surface activity of hydrophobically functionalized extracted pectins. Carbohydrate Polymers. 78 (4): 841-846.

Downloads

Published

2023-05-15

How to Cite

Hanna Tiffany, M., Andi Marlisa Bossa Samang, & Syahmidarni Al Islamiyah. (2023). Potensi Polisakarida (Selulosa, Lignin, Pektin) Sebagai Bahan Baku Alternatif Bio-Based Surfaktan Polimerik . Jurnal Informasi, Sains Dan Teknologi, 6(1), 78–89. https://doi.org/10.55606/isaintek.v6i1.62