Potensi Pangan Fungsional Tradisional Lombok: Tinjauan Literatur Gizi, Bioaktivitas, dan Peluang Pengembangan
DOI:
https://doi.org/10.55606/isaintek.v8i1.338Keywords:
Antioxidants, Bioactive compounds, Functional food, Lombok traditional food, Nutritional compositionAbstract
Lombok Island is home to a rich culinary heritage, with traditional dishes deeply rooted in Sasak culture and potential functional food value. This literature review investigates five iconic Lombok dishes—Ayam Taliwang, Plecing Kangkung, Sate Bulayak, Ares, and Beberuk Terong—focusing on their nutritional profiles, bioactive compounds, and health-related properties. Adopting the PRISMA-ScR approach, this study synthesizes 30 scientific articles published between 2014–2024 and compares findings with the Indonesian Food Composition Table (TKPI). Results reveal the presence of bioactive compounds such as capsaicin, curcumin, allicin, flavonoids, and nasunin, with antioxidant, antidiabetic, immunomodulatory, and cardioprotective effects. The review highlights challenges in food safety (e.g., acrylamide, aflatoxin risks), along with the need for standardized recipes and modern packaging strategies. The paper recommends further scientific validation and sustainable innovation to transform Lombok's traditional cuisine into evidence-based functional food products that strengthen local identity, promote public health, and boost Indonesia’s healthy food industry.
References
Ao, Z., Huang, Z., & Liu, H. (2022). Spicy food and chili peppers and multiple health outcomes: Umbrella review. Molecular Nutrition & Food Research, 66(23), e2200167.
Agrawal, S., Tripathi, P., & Choudhary, B. (2015). Hypolipidemic activity of Coriandrum sativum and Syzygium cumini in hyperlipidemic rats. Journal of Ethnopharmacology, 164, 210–218. https://doi.org/10.1016/j.jep.2015.02.051.
Anas, M., Falak, A., Khan, A., Khattak, W. A., Nisa, S. G., Aslam, Q., Khan, K. A., Saleem, M. H., & Fahad, S. (2024). Therapeutic potential and agricultural benefits of curcumin: A comprehensive review of health and sustainability applications. Journal of Umm Al-Qura University for Applied Sciences. https://doi.org/10.1007/s43994-024-00200-7.
Ansary, J., Forbes-Hernández, T. Y., Gil, E., Cianciosi, D., Zhang, J., Elexpuru-Zabaleta, M., Simal-Gándara, J., Giampieri, F., & Battino, M. (2020). Potential health benefit of garlic based on human intervention studies: A brief overview. Antioxidants, 9(7), 619. https://doi.org/10.3390/antiox9070619.
Ayustaningwarno, F., Anjani, G., Ayu, A. M., et al. (2024). A critical review of ginger’s (Zingiber officinale) antioxidant, anti-inflammatory, and immunomodulatory activities. Frontiers in Nutrition, 11, 1364836. https://doi.org/10.3389/fnut.2024.1364836.
Carrín, M. E., Zamora, M. C., & Méndez, E. (2010). Peanut oil: Compositional data and effects on cardiovascular health. European Journal of Lipid Science and Technology, 112(9), 1021–1027. https://doi.org/10.1002/ejlt.200900176.
Frontiers in Oncology. (2022). Capsaicin: A twodecade systematic review of global research. Frontiers in Oncology, 12, Article 908487. https://doi.org/10.3389/fonc.2022.908487.
Giovannucci, E. (2012). Lycopene-rich tomatoes linked to lower stroke risk. Harvard Health Blog. https://www.health.harvard.edu/blog/lycopene-rich-tomatoes-linked-to-lower-stroke-risk-201205034734.
Guo, X., Zhuang, P., Li, L., Qi, Q., & Zhu, Y. (2019). Association of spicy chili food consumption with total and cardiovascular mortality in a large cohort study. Journal of the American College of Cardiology, 74(10), 1233–1244. https://doi.org/10.1016/j.jacc.2019.09.068.
Hazeldine, J., et al. (2021). A meta-analysis of randomized controlled trials on curcumin in osteoarthritis patients. Journal of Medicinal Food, 24(5), 337–347.
Hemalatha, S., & Raja, K. (2022). Resveratrol and phenolic content in peanut skins and kernels extracted from roasted peanuts. Food Chemistry, 380, 132121. https://doi.org/10.1016/j.foodchem.2022.132121
Jenkins, D. J. A., et al. (2011). Effect of a dietary portfolio of cholesterol-lowering foods vs lovastatin on serum lipids and C-reactive protein. British Journal of Nutrition, 106(3), 379–387. https://doi.org/10.1017/S0007114510004693
Khaw, K. T., et al. (2018). Randomised trial of coconut oil, olive oil or butter on blood lipids and other cardiovascular risk factors in healthy men and women. BMJ Open, 8(3), e027396. https://doi.org/10.1136/bmjopen-2018-027396.
Kumar, S., Poonia, P., & Khosla, R. (2021). L-Arginine and nitric oxide in vascular health: A narrative review. Nutrients, 13(4), 665. https://doi.org/10.3390/nu13040665.
Manzanares, P., Dacasto, M., Benedto, J., & Yang, Y. (2024). Animal board invited review: The contribution of red meat to adult nutrition and health. Journal of Animal Science, 102(5), skad034. https://doi.org/10.1093/jas/skad034.
Martirosyan, D. M., & Singh, J. (2015). A new definition of functional food by FFC: What makes a new definition unique? Functional Foods in Health and Disease, 5(6), 209–223. https://ffhdj.com/index.php/ffhd/article/view/183.
Ogunwolu, S. O., Gernah, D. I., & Fasogbon, B. P. (2023). Fatty acid composition of peanut oil: Oleic and linoleic acid proportions. Food & Function, 14(1), 105. https://doi.org/10.1039/D3FO03689E.
O’Neill, M. E., & Tyrrell, R. (2022). Meat and human health—Current knowledge and research gaps. Nutrients, 14(7), 1293. https://doi.org/10.3390/nu14071293.
Pareek, A., Pant, M., Gupta, M. M., Kashania, P., Ratan, Y., Jain, V., Pareek, A., & Chuturgoon, A. A. (2023). Moringa oleifera: An updated comprehensive review of its pharmacological activities, ethnomedicinal, phytopharmaceutical formulation, clinical, phytochemical, and toxicological aspects. International Journal of Molecular Sciences, 24(3), 2098. https://doi.org/10.3390/ijms24032098
Ried, K. (2016). Garlic lowers blood pressure in hypertensive individuals, regulates serum cholesterol, and stimulates immunity: An updated meta-analysis and review. The Journal of Nutrition, 146(2), 389S–396S. https://doi.org/10.3945/jn.114.202192.
Ried, K., et al. (2021). Association of hot red chili pepper consumption and risk of total and cardiovascular disease death. PLOS ONE, 12(7), e0169876. https://doi.org/10.1371/journal.pone.0169876.
Rudrappa, U. (2025). Valeur nutritionnelle du liseron d’eau (Ipomoea aquatica): Antioxydants, micronutriments, et faible teneur calorique. [Jurnal Nutrisi Internasional]. Diakses via Wikipedia: https://fr.wikipedia.org.
Shoba, G., Joy, D., Joseph, T., Majeed, M., Rajendran, R., & Srinivas, P. (1998). Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Medica, 64(4), 353–356.
Sukenti, K., Hakim, L., Indriyani, S., Purwanto, Y., & Matthews, P. J. (2016). Ethnobotanical study on local cuisine of the Sasak tribe in Lombok Island, Indonesia. Journal of Ethnic Foods, 3(3), 189–200. https://doi.org/10.1016/j.jef.2016.08.002.
Tamanna, N., & Mahmood, N. (2015). Food processing and Maillard reaction products: Effect on human health and nutrition–A review. International Journal of Food Science, 2015, Article 526762. https://doi.org/10.1155/2015/526762.
Thavarajah, D., Thavarajah, P., & Weerasena, J. (2019). Health aspects of peanuts as an outcome of its chemical composition. Foods, 8(2), 63. https://doi.org/10.3390/foods8020063.
Umar, K. J., Hassan, L. G., Dangoggo, S. M., & Ladan, M. J. (2007). Nutritional composition of water spinach (Ipomoea aquatica Forsk.) leaves. Journal of Applied Sciences, 7(6), 803–809. https://doi.org/10.3923/jas.2007.803.809.
Wright, M. E., et al. (2005). Increases in plasma lycopene concentration after consumption of tomatoes cooked with olive oil. British Journal of Nutrition, 95(3), 437–442.
Zhou, Z., Ferreira, V., & Morrison, R. (2022). Flavour chemistry of chicken meat: A review. Foods, 11(2), 123. https://doi.org/10.3390/foods11020123.
Ghosh, S. (2002). Influence of dietary spices and their active principles on pancreatic digestive enzymes in albino rats. Nahrung, 47(6), 408–412. https://doi.org/10.1002/food.200390091.
Ikehara, S., Iso, H., et al. (2021). Peanut consumption and risk of stroke and ischemic heart disease in Japanese men and women: The JPHC study. Stroke, 52(11), 3543–3550. https://doi.org/10.1161/STROKEAHA.120.031212.
Rao, R. R., Platel, K., & Srinivasan, K. (2003). Digestive stimulant action of three Indian spice mixes in rats. Nahrung, 47(6), 408–412. https://doi.org/10.1002/food.200390091.
Henry, C. J. K., et al. (2014). Glycaemic index and glycaemic load values of selected popular foods in Southeast Asia. British Journal of Nutrition, 111(7), 1350–1359. https://doi.org/10.1017/S000711451400058X.
Wolever, T. M. S., & Jenkins, D. J. A. (2002). The use of the glycemic index in predicting the glycemic response of mixed meals. American Journal of Clinical Nutrition, 76(6), 1077–1083. https://doi.org/10.1093/ajcn/76.6.1077.
Thongprasom, K., et al. (2020). Impact of macronutrient-balanced meals on postprandial glycaemia. Nutrition Journal, 19(1), 23. https://doi.org/10.1186/s12937-020-00534-9.
Liyadipitiya, N., Ekanayake, U., Jayarathna, L., Ulpathakumbura, S., Jayasinghe, L., & Marikkar, N. (2025). Nutritional composition and bioactivity studies on edible soft stem of banana (Musa spp.). Agricultural Science and Technology, 17(1), 10–23. https://doi.org/10.15547/ast.2025.01.002.
Ramu, R., Shirahatti, P. S., Anilakumar, K. R., Nayakavadi, S., Zameer, F., Dhananjaya, B. L., & Nagendra Prasad, M. N. (2017). Assessment of nutritional quality and global antioxidant response of banana (Musa sp.) pseudostem and flower. Pharmacognosy Research, Suppl 1, S74–S83. https://doi.org/10.4103/pr.pr_67_17.
Poonguzhali, P. K., & Chegu, H. (1994). The influence of banana stem extract on urinary risk factors for stones in normal and hyperoxaluric rats. British Journal of Urology, 74(1), 23–25. https://doi.org/10.1111/j.1464-410x.1994.tb16539.x.
Panigrahi, P. N., Dey, S., Sahoo, M., & Dan, A. (2017). Antiurolithiatic and antioxidant efficacy of Musa paradisiaca pseudostem on ethylene glycol induced nephrolithiasis in rat. Indian Journal of Pharmacology, 49(1), 77–83. https://doi.org/10.4103/ijp.IJP_166_17.
Noda, Y., Kaneyuki, T., Igarashi, K., Mori, A., & Packer, L. (1998). Antioxidant activity of nasunin, an anthocyanin in eggplant peels. Research Communications in Molecular Pathology and Pharmacology, 102(2), 175–187.
Ceriotti, S., Casati, L., Stancari, G., Stucchi, L., et al. (2016). Nasunin, the major component of anthocyanin pigment of eggplant, protects cultured MC3T3-E1 osteoblastic cells against oxidative stress. Journal of Functional Foods, 23, 474–484. https://doi.org/10.1016/j.jff.2016.08.002.
Colak, N., Kurt-Celebi, A., Gruz, J., Strnad, M., Hayirlioglu-Ayaz, S., Choung, M.-G., Esatbeyoglu, T., & Ayaz, F. A. (2022). The phenolics and antioxidant properties of black and purple versus white eggplant cultivars. Molecules, 27(8), 2410. https://doi.org/10.3390/molecules27082410.
El Sharkawy, L., Mahmoud, S., Sabry, O., & Ibrahim, N. (2022). Stability of anthocyanins in purple eggplant pomace under various pH and temperature conditions. Plants, 11(3), 577. https://doi.org/10.3390/plants11030577.
Yan, Y., & Li, J. (2024). Association of dietary anthocyanidins intake with all-cause and cardiovascular disease mortality: A prospective cohort study. Scientific Reports, 14, 26595. https://doi.org/10.1038/s41598-024-76805-z.
Wright, N. C., et al. (2005). Increases in plasma lycopene concentration after consumption of tomatoes cooked with olive oil. British Journal of Nutrition, 95(3), 437–442. https://doi.org/10.1079/BJN20051442.
Supandi, S., et al. (2021). Anti-inflammatory activity of Kaempferia galanga L. rhizome extract and its ethyl cinnamate component via lipoxygenase inhibition. Food Chemistry, 356, 129734. https://doi.org/10.1016/j.foodchem.2021.129734.
Wahyuni, I. S., Sufiawati, I., & Nittayananta, W. (2012). Bioactivity guided isolation of ethyl p-methoxycinnamate, an anti-inflammatory constituent, from Kaempferia galanga L. extracts. Molecules, 17(7), 8720–8734. https://doi.org/10.3390/molecules17078720.
Kilonzo Nthenge, A., Chen, F. C., & Godwin, S. L. (2006). Efficacy of home washing methods in controlling surface microbial contamination on fresh produce. Journal of Food Protection, 69(2), 330–334. https://doi.org/10.4315/0362-028X-69.2.330.
De Munter, J. S. L., Hu, F. B., Spiegelman, D., Franz, M., & van Dam, R. M. (2009). Whole grain, bran, and germ intake and risk of type 2 diabetes: A prospective cohort study and systematic review. PLoS Medicine, 6(8), e1000092. https://doi.org/10.1371/journal.pmed.1000092.
Ifedi, C. P., Maziya-Dixon, B., Ricketts, R. D., & Enyiukwu, D. N. (2014). Nutrient composition and glycemic index of native Nigerian staples: Cereals, roots and tubers. Food Chemistry, 150, 222–229. https://doi.org/10.1016/j.foodchem.2013.10.001.
Pereira, P. A. P., & Bassinello, P. Z. (2019). Cassava resistant starch production and impact on gut microbiota. Food Research International, 115, 369–378. https://doi.org/10.1016/j.foodres.2018.08.018.
Zeeman, S. C., et al. (2021). High resistant starch crops for human health. Proceedings of the National Academy of Sciences, 120(12), e2305990120. https://doi.org/10.1073/pnas.2305990120.
Du, Y., Zhou, H., & Zha, W. (2024). Garlic consumption reduces dyslipidemia risk: A meta-analysis of randomized controlled trials. Journal of Health, Population and Nutrition, 43, 113. https://doi.org/10.1186/s41043-024-00608-1.
Eyres, L., Eyres, M. F., Chisholm, A., & Brown, R. C. (2016). Coconut oil consumption and cardiovascular risk factors in humans. Nutrition Reviews. https://doi.org/10.1002/nr.21418.
Ao, Z., Huang, Z., & Liu, H. (2022). Spicy food and chili peppers and multiple health outcomes: Umbrella review. Molecular Nutrition & Food Research, 66(23), e2200167. https://doi.org/10.1002/mnfr.202200167.
Bonev, B. (2012). β-Carotene is an important vitamin A source for humans. Journal of Nutrition & Metabolism. https://doi.org/10.1155/2012/850892.
Chowdhury, R., et al. (2008). Curcumin down regulates NF-κB and related genes in multiple myeloma patients. Blood, 110(11), 1177–1185. https://doi.org/10.1182/blood-2007-08-107486.
Colak, N., Kurt-Celebi, A., Gruz, J., Strnad, M., Hayirlioglu-Ayaz, S., Choung, M.-G., Esatbeyoglu, T., & Ayaz, F. A. (2022). The phenolics and antioxidant properties of black and purple versus white eggplant cultivars. Molecules, 27(8), 2410. https://doi.org/10.3390/molecules27082410.
Condurache, N.-N., Croitoru, C., Enachi, E., Bahrim, G.-E., Stănciuc, N., & Râpeanu, G. (2021). Eggplant peels as a valuable source of anthocyanins: Extraction, thermal stability and biological activities. Plants, 10(3), 577. https://doi.org/10.3390/plants10030577.
Enrichment of tomato paste with 6% tomato peel increases lycopene and β-carotene content. (2022). Journal of Food Biochemistry. https://doi.org/10.1016/j.jfbc.2022.10136.
Food & Nutrition Research. (2022). Niacin. Food & Nutrition Research, 66, Article 10299. https://doi.org/10.29219/fnr.v66.10299.
Growth, D. F., & Parker, W. S. (2021). Growth and carotenoid contents of intercropped vegetables in different harvest times. Zion Journal of Science & Technology, 9(4), 490. https://doi.org/10.1155/2021/1159567.
Habte, H., Gebrewahd, F., & Admasu, B. (2022). A narrative review of ginger’s beneficial effects in human health: Therapeutic potential and molecular mechanisms. Molecules, 27(21), 7223. https://doi.org/10.3390/molecules27217223.
Handique, G. K., Thakur, D., Handique, A. K., Saikia, K., & Dey, S. (2023). Chemical and biochemical characterization of Ipomoea aquatica: Genoprotective potential and inhibitory mechanism. Frontiers in Nutrition, 10, 1304903. https://doi.org/10.3389/fnut.2023.1304903.
Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: A review of its effects on human health. Foods, 6(10), 92. https://doi.org/10.3390/foods6100047.
Hui, S., et al. (2020). Capsaicin improves glucose homeostasis via GLP-1 secretion through remodeling of gut microbiota. FASEB Journal, 34(6), 8558–8573. https://doi.org/10.1096/fj.201902618RR.
Ikonić, P., Peulić, T., Delić, J., Novaković, A., Dapčević Hadnađev, T., & Skrobot, D. (2021). Quality standardization and certification of traditional food products. IOP Conference Series: Earth and Environmental Science, 854(1), Article 012035. https://doi.org/10.1088/1755-1315/854/1/012035.
Kim, J., Lacueva, C. A., & Goya, L. (2013). Chlorogenic acid improves glucose tolerance and insulin sensitivity. Journal of Agricultural and Food Chemistry, 61(9), 2103–2111. https://doi.org/10.1021/jf4001233.
Laskowski, W., Górska-Warsewicz, H., & Kulykovets, O. (2018). Meat, meat products and seafood as sources of energy and nutrients in the average Polish diet. Nutrients, 10(10), 1412. https://doi.org/10.3390/nu10101412.
Matsubara, K., Kaneyuki, T., Miyake, T., & Mori, M. (2005). Antiangiogenic activity of nasunin, an antioxidant anthocyanin. Journal of Agricultural and Food Chemistry, 53(16), 6272–6275. https://doi.org/10.1021/jf050796r.
Naumov, K. (2023). The employment of standardized recipes, an essential prerequisite for consistent quality of the culinary product. ERAZ 2023 – Conference Proceedings. https://doi.org/10.31410/ERAZ.2023.401.
Nakayama, H., et al. (2013). Chronic intake of onion extract containing quercetin improved postprandial endothelial dysfunction. Journal of the American College of Nutrition, 32(3), 160–164. https://doi.org/10.1080/07315724.2013.797858.
Nantz, M. P., Rowe, C. A., Muller, C. E., Creasy, R. A., Stanilka, J. M., & Percival, S. S. (2012). Aged garlic extract improves NK and γδ T cell function and reduces cold and flu symptoms. Clinical Nutrition, 31(3), 337–344. https://doi.org/10.1016/j.clnu.2011.11.019.
Pareek, A., Pant, M., Gupta, M. M., et al. (2023). Moringa oleifera: An updated comprehensive review. International Journal of Molecular Sciences, 24(3), 2098. https://doi.org/10.3390/ijms24032098.
Percival, S. S., Nantz, M. P., & Rowe, C. A. (2016). Aged garlic extract modifies human immunity. Journal of Nutrition, 146(2), 433S–436S. https://doi.org/10.3945/jn.115.210427.
Ried, K., Toben, C., & Fakler, P. (2013). Effect of garlic on serum lipids: An updated meta-analysis. Nutrition Reviews, 71(5), 282–299. https://doi.org/10.1111/nure.12012.
Ried, K., et al. (2019). Garlic lowers blood pressure in hypertensive subjects: A meta-analysis. Experimental and Therapeutic Medicine, 18(2), 1472–1478. https://doi.org/10.3892/etm.2019.8374.
Saikia, K., Dey, S., Hazarika, S. N., Handique, G. K., Thakur, D., & Handique, A. K. (2023). Ipomoea aquatica phytochemicals against α-amylase and α-glucosidase. Frontiers in Nutrition, 10, 1304903. https://doi.org/10.3389/fnut.2023.1304903
Saini, R. K., Sivanesan, I., & Keum, Y. S. (2016). Phytochemicals of Moringa oleifera: A review of their nutritional, therapeutic and industrial significance. 3 Biotech, 6(2), 203. https://doi.org/10.1007/s13205-016-0526-3.
Silagy, C. A., & Neil, H. A. (1994). Garlic powder preparations and blood pressure: A meta-analysis. Journal of Hypertension, 12(4), 463–468. https://doi.org/10.1097/00004872-199404000-00007.
Szallasi, A., & Blumberg, P. M. (2016). Pharmacological activity of capsaicin: Mechanisms and uses. Molecules, 22(8), 4469. https://doi.org/10.3390/molecules22084469.
Xu, Y., Yang, J., & Liang, T. (2018). Curcumin inhibits NF-κB and reduces inflammation in diet-induced liver inflammation. Journal of Nutritional Biochemistry, 54, 55–63. https://doi.org/10.1016/j.jnutbio.2017.11.004.
Young, H.-Y., Luo, Y.-L., Cheng, H.-Y., Hsieh, W.-C., Liao, J.-C., & Peng, W.-H. (2005). Analgesic and anti-inflammatory activities of [6]-gingerol. Journal of Ethnopharmacology, 96(1–2), 207–210. https://doi.org/10.1016/j.jep.2004.09.009.
Zhao, P., Li, X., Wang, Y., Yan, L., Guo, L., Huang, L., & Gao, W. (2020). Immunomodulatory activity of Moringa oleifera leaf polysaccharides. International Journal of Biological Macromolecules, 154, 1400–1407. https://doi.org/10.1016/j.ijbiomac.2019.11.021.
Zhao, X., Cheng, T., Xia, H., Yang, Y., & Wang, S. (2024). Garlic on glucose and lipid profile: A systematic review. Nutrients, 16(11), 1692. https://doi.org/10.3390/nu16111692.